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ANALYSIS OF A STRUCTURE WITH A RANDOM GEOMETRY
by

J. Lyell Sanders Jr.

Introduction

A metal polycrystal, a nonwoven fabric such as felt, a suspension of

particles of random size, shape, and location in a viscous fluid, are examples
of what we mean by a structure with a random geometry. The problem of interest
in connection with such structures is the determination of some average property
such as thc.effoctivc Young's modulus or the effective viscosity or perhaps
the probability density function of these properties. Solutions satisfactory
for practical purposes to a fair number of such problems have appeared in the
literature, but the author knows of no instance in which some (nontrivial)
average property of a random structure has been determined exactly. The
difficulty is not in solving some known mathematical equation, but rather in
reducing such problems to exact mathematical terms. The purpose of the present
paper is to become better acquainted with the nature of the problem by means
of an exact analysis of s very simple random structure.

The paper is concorﬂcd with the analysis of a structure which is essentially
one-dimensional. It turns out that the analysis of this structure is much like
the analysis of a Markov process. 'The fact that a spacial coordinate replaces
the time-1ike 1nd;pondonc variable of a Markov process makes for some
complication as might be expected since boundary value problems are generally

‘more complicated than initial value problems. The results obtained give no

This work was sponsored by the Office of Naval Research under Contract
Nonr 1866(02).
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clear indication of how to approach the exact analysis of any physical problem
but suggest that the next step should probably be to invent some two-dimensional
problem sufficiently simple to be analyzed and not so complicated as a real

physical problem is likely to be.

Analysis of a Random Structure

The lﬁructuro to be considered is composed of a uniform elastic rod
pin-jointed to a series of elastic beams which are built-in to a rigid

foundation as shown im Figure 1.

elastic beam elastic rod
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rigid __goundation

Figure 1
The beams are randomly spaced with, on the average, N beams per unit lemgth.
In other words the probability of finding a beam in a length &x 1is equal to
l&x°. If the random variable y is the dilﬁunco batween successive beams then,
a8 1is well known in such cases, the probability density function (p.d.f.) of y
ie given by’tho Poisson law No’“y . ©For the preseat suppose the rod is semi-
infinite with one end at the origin. let a force P bf applied to the rod at
the origin and 18t the resulting displacement of the end be u . lLet @ = F/u
. be called the stiffness of the structurs. Consider the problem of finding the
p.d.f. P(o) of the :llldbl vnrinbﬁ ¢ . First add on a beam at the origin.
The stiffness of the augmented structure ¢' is

e
° ¢'sg+q (1)

Er
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vhere a 1s the stiffness of a beam with respect to a load at its tip. The

p.d.f. o' 1is thus
Qe") = P@) v = P’ @)

Now add a piece of rod of length y . The stiffness @" of the augmented
structure is now given by

1 1 1

8" al + x,y (3)
where x/L is the stiffness of a rod of length L . The conditional

probability density function (c.p.d.f.) of " given o' 1is

Nem') m d - . RN .
T(e"ie') = Ry [Tl = »ls - 20 25 4)
. (")
where
R(y) = NV y20
()
= 0 y<o0

and the p.d.f. of o" 1is

Jresotrae o )
Now the augmented structure with the beam and rod added is statistically the
same a8 the original structure, therefore the p.d.f. of @" must be the same

as the p.d.f. of @ and hence
| TR D!
* P(e) -%l e P(o'-q)de’ ¢
(]
4
The integral equation (7) is easily reducible to the following differential-

difference equation

(%)' - NP = -XNP(2-q) (8)
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where a prime denotes differentiation with respect to @& . If the beams have
& random stiffness B with p.d.f. S(B) we obtain instead of (8) the following

-4

(czl’)' = XNP = -an P(2)8(c-2)dg 9
. 0 e

Equations (8) or (9) must be solved subject to the normalization condition

j P(o)de = 1 (10)
0

B

Let PL(p) denote the Laplace transform of P(@) . We have

(] [
2, = [ P(@)e%ag 20 = - [ or(@)es = %
(1] 0
(11)
. —
" 2 2
P(0) =1 PL(O) = | ¢°P(e)de =@
0
where a bar over a quantity indicates its mean valus. Taking the Laplace
transform of Eq. (9) leads to
l-SL
"o — -
PL aN » PL 0 (12)

In the special case S8(B) = é .-B/a for which 5 = o the exact solution for

g

-G+

m)-—z% JE? (13
20°K, (53

where ‘1 is the modified Bessel function of the second kind.

r@) 1

It is interesting to make some comparisons with the stiffness of a similar

®
structure with uniformly spaced beams. Let the beams be spaced uniformly at a
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distance 1/N and have a uniform stiffness «a , then the stiffness of the

structure (with no besm at the finite end) is

2

a’\1/2 g

o= (anN+ A ) 2
Now let =0, N=o and require qN to remain finite, then

Gzﬂa’tN

From Eq. (12) and with B = -81"(0) = q

_2_ lim

e P! = g xN

p~0 'L

the same result as in (15), but in general (1;)2 ¢ 02 .

()
Structure of Finite Length

The solution of the problem in the. preceding section for a semi-infinite
structure depended on a special device which will not work for a structure of
o
finite length. Consider now a somewhat more complicated problem for the

structure shown in Figure 2.

F ag—
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Figure 2

Let it be required to find the joint p.d.f. R(®,u,x) yhere ¢ and u are

(14)

a15)

(16)

the stiffness and displacement at the right end. The left end of the structure

is subjected to a load F as shown and u 1is taken positive to the left. This

time augment the structure by an infinitesimal piece in such a way as to leave

—
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the statistical character of the structure undisturbed. Let Rl(e,u,x+6x) be
the new R on condition there is no beam in the added piece of length &x ,

and R, be the new R on condition there is a beam {n the added length. The

2
unconditional new R 1is given by

R(®,u,x+bx) = Rl(a,u,x+6x)(1-N6x) + Rz(c,u,x+6x)Nbx (17)

since we do not or do include a beam in the added piece with probabilities

1 - N8x and N&x respectively. Expressions for ll and R2 are found as
follows.

1. No besams gdded. Let &' and u' be the new displacement and stiffness.

These are related to o and u as follows

u' =y umy

or (18)
.1, 8 !
o' & x O " xn-g'bx

According to the calculus of probabilities

Rl(c',u',x+6x)dc'du' = R(g,u,x)dedu (19)

where

dodu = J( )da du' = (x-a'Gx) da'du (20)

and where J 1is the Jacobian of the change of variable. From this it follows

2

R 0! yu',x+x) = R(c—— (21)

T ) Gl
2. DBegm gdded. In this care the change in stiffness due to the added rod may
be neglected and we have

e'=0+a (22)
The added beam exerts a force a ' on the éld:structure and causes a .

displacement to the right by an amount




T
"o ul
u -]
but
ul.u_u"
therefor

In this case .

‘l
J = o'-a
and
a' T t
Rz(c',u',x-i-éx) = R(@,u,x) Py R(e'-qa, g_'-!-sz »X) Py

Primes can now be dropped with no loss in sense and (17) becomes

Ra,u,008%) = R u,0) A (1-ex) + 2 RGo-a, T x)Nox

u
n-0b x-0bx a-q

Subtract R(o,u,x) from both sides, divide by 4x and let &x —= 0 , the

result 1is
g—: - fg—c (6%R) + NR = gf—a R(o-a, g-‘_‘z ,x)
If the beam stiffness is random with p.d.f. 8(B) then the result is
]
g—: %fg; (@%R) + KR = ch R(c-2, g‘_’—g ,x)8(8) %52
0

These equations are to be solved subject to the usual normalizing condition
and the initial condition R(c,u,0) = 0 for Qu ¥ F . The equation for the

marginal distribution P(g,x) may be obtained from (29) by integration over

all values of u . The result is

2}
-1 @' - w e n [ re-ns@ar
0

oP

X

(23)

(24)

. (24)

(25)

(26)

@n

(28)

(29)

(30)
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Appropriate conditions on the solution of this equation are P(0,0) given and

[ ]
f P(e,x)do = 1 . If the left end is attached to a spring of stiffness o* ,
0

for example, the initial condition is P(g,0) = 8 (g~g*) . No solutions of
Eq. (30) have been obtained by the author except the one given in the last
section for the semi~-infinite structure when Eq. (30) reduces to Eq. (9) because
=) 4
= 0.

Properties at an Interior Point

Let us now turn our attention to the problem of determining the joint p.d.f.
of @ , u, and force f (in the rod) at a point x interior to a structure of

finite length L . This problem may be solved in terms of previously determined

F et

RN ///7//[7/ 1711777
Y Figure 3 x L

probability demsity functions if we make a cut in the structure at the point x
and then determine the forces and displacements necessary to restore continuity

and equilibrium.

£ £ ’
— Ar—
1 2

»®

Figure 4
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Figure 4 shows the cut structure near the point x .

o, " the stiffness at the point 1

e, = the stiffness at the point 2

Let:

o = the stiffness of the continuous structure at x

f = the force necessary to effect the closure which equals the force at

x on the continuous structure

are joinmed together

= the gap between 1 and 2 before the two pieces of the structure

u = the displacement at x of the continuous structure (positive to the

left)

= displacement of point 1 after the force f 1is applied

u, = displacement of point 2 after the force f 1is applied

We have
u; =uy - f/ol

u, = f/c:y2

The structure will be continuous and in equilibriwm if £ and u are

determined from

ul-uz-u

This gives

%1%
o1*,

u=s

The stiffness of the joined structure is obviously

o= 81 + 02

(31)
(32)

(33)

(34)

(35)

(36)
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Now since 01 and u0 are independent of °2 we may write

u.,0,,8
0791”
p@,u,f,x) = R(GI,UO,X)P(OZ,Lf_X)'J("&jL—’f—Z') 37

where p 1s the required p.d.f. and R and P have been previously defined.

Equations (34), (35) and (36) may be solved for 0,0, and Y, with the result

uy = cuzl(au-f)
o, =e - f/u (38)

e, = f/u

From (38) we calculate J to be
J = g/(ou-£) (39)

The result is thus

2
£ u £ £
P@,u,E,%) = RE = ) 5T PG LLGIs 5 6> (>0

-0 £c0 or 0<% (40)
u u

With a sufficient amount of effort one can derive an equation resembling
a‘Fokkor-Pianck equation satisfied by p , but the resilts for L finite or
infinite differ from each other. The author has been unable to arrive at these
equations from first principles or to determine whether Br not these ecuations
together with certain boundary conditions constitute an appropriate formulation
of the problem. The equation in question contains gﬁ but not gfg and the
association of such an equation with two point boundary conditionlxoacnl

inappropriate. On the other hand there does not seem to ba any reasomnable

second-order Fokker~Planck squation satisfied by p .
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